
Round hashing for Data Storage
Roberto Grossi and Luca Versari

Presented by Garance Gourdel

L3 : Periods in the order-preserving model, Jakub Radoszewski

M1 : Read optimized BWT, Travis Gagie and Gonzalo Navarro

M2 : Similarity measures, Tatiana Starikovskaya

Past internships

2

Research to come

ARPE : Prefix search in consistent hashing, Roberto Grossi

PhD : Streaming model with Tatiana Starikovskaya
(conditioned by the finding of a grant)

3

Article Presented

Round-Hashing for Data Storage: Distributed Servers and External-
Memory Tables

Roberto Grossi Luca Versari

Università di Pisa Università di Pisa
(Now at Google)

Published at ESA 2018

ESA : European Symposium on
Algorithms

Rank A (Core Ranking)

4

Consistent hashing

A set of K keys

5

(web pages)
m Buckets

(servers)

Consistent hashing

A set of K keys

6

(web pages)
m Buckets

(servers)

Consistent hashing

A set of K keys

7

(web pages)
m Buckets

(servers)

Consistent hashing

A set of K keys

8

(web pages)
m Buckets

(servers)

Consistent hashing

9

(web pages) (servers)
A set of K keys m Buckets

Consistent hashing

10

(web pages) (servers)
A set of K keys m Buckets

Consistent hashing

11

(web pages) (servers)
A set of K keys m Buckets

Operations

● numBuckets() - Return the current number of buckets.

● findBucket(k) - Given a key k find its bucket in [0, m-1].

● newBucket() - Add a new bucket m.

● freeBucket() - Release bucket m-1.

12

Symposium on the Theory of Computing (STOC) 1997
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin.

13

Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web.

h a uniformly
random hash
function

h(1
)

h(0
)

h(2
)

h(k
)

bucket/server

key/page

Symposium on the Theory of Computing (STOC) 1997
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin.

14

Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web.

h a uniformly
random hash
function

h(1
)

h(0
)

h(2
)

h(k
)

bucket/server

key/page

Symposium on the Theory of Computing (STOC) 1997
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin.

15

Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web.

h a uniformly
random hash
function

h(1
)

h(0
)

h(2
)

h(k
)

bucket/server

key/page

Theoretically,
good balancing,
but problematic in
practice with few
servers

Symposium on the Theory of Computing (STOC) 1997
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin.

16

Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web.

h a uniformly
random hash
function

h(1
)

h(0
)

h(2
)

h(k
)

bucket/server

key/page

Theoretically,
good balancing,
but problematic in
practice with few
servers

Symposium on the Theory of Computing (STOC) 1997
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin.

17

Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web.

h a uniformly
random hash
function

h(1
)

h(0
)

h(2
)

h(k
)

bucket/server

key/page

Theoretically,
good balancing,
but problematic in
practice with few
servers

18

IEEE/ACM Transactions on Networking (TON) 1998

Using Name-Based Mappings to Increase Hit Rates

For all web page k, and all server s, Compute h(k,s).

k is assigned to the server that maximize the hash value.

Highest random weight hashing (Rendez-vous hashing)

David G. Thaler and Chinya V.
Ravishankar.

When a server is added each bucket scans its key, if they have a
new maximum they move to the new bucket.

Easy redistribution for deleted server.

19

2014
A fast, minimal memory, consistent hash algorithm

John Lamping and Eric Veach.

Jump consistent hashing

0

1

2

3

4
bucket/
server

key/page

b

j-1

j

j+
1

j+
2Jump to the

bucket j with
probability 1/
(j+1)

For data center, servers cannot disappear, it would mean loss
of valuable data, they can only be added to increase storage
capacity.

20

New setting: consistent hashing for data storage.
1980

Linear hashing: A new tool for file and table addressing.
Witold
Litwin.

0 1 32Initial number
of bucket N =
4
Level : L = 0

5

0 1 324
N = 5 L = 1

At any time, delimits the frontier between the current level and the previous one,
and :

Complexity

21

Number of buckets

Load factor

Constant user selectable (typically 64 or 128)

Round hashing - Contributions

22

Round hashing - Contributions

23

● findBucket(k) takes constant time and space in the worst-case (important

for security)

Round hashing - Contributions

24

● findBucket(k) takes constant time and space in the worst-case (important

for security)

● The factor between the most and the least populated bucket is at most

Round hashing - Contributions

25

● It avoids general divisions and modulo operations.

● findBucket(k) takes constant time and space in the worst-case (important

for security)

On Intel processors, euclidean divisions and modulo take from 85 to
100 cycles compared to 1 cycle for addition.

● The factor between the most and the least populated bucket is at most

Round hashing

26

Short arcs

Long arcs

Initialisation:
 s = s0

To add a bucket:
 If no long arcs :
 If s < 2s0 -1 :
 s := s+1
 Else :
 s = s0

 Take the first s long
arcs
 and form s+1 short
arcs
 with them. (multiples of 1/s)

(multiples of 1/(s+1))

Round hashing

27

0

1

2

0

1

23

4

5
0

1

2

3

4

5 6

7

8

9

11

10

1st
round

2nd
round

3rd round

s0 = 3

Round hashing

28

Experimental results - time

29

Computing 10 millions hash values

30

Experimental results - load balancing

External memory tables: round table
● High-throughput servers with many lookup request, few updates
● Some keys can be kept in a stash in main memory

 the total number of keys in the table.
 the maximum number of keys that fit inside one block transfer.
 the number of keys in the stash.

● Look up: Reads just 1 block of EM, thus constant CPU time.
● Update: in the worst case, expected.
● The number of keys in the stash : .

31

My ARPE Research subject

32

Prefix search in consistent hashing

My ARPE Research subject

Several possible definitions, Given P a string:

33

Prefix search in consistent hashing

My ARPE Research subject

Several possible definitions, Given P a string:

● Return a bucket containing a key that has P as a prefix.

34

Prefix search in consistent hashing

My ARPE Research subject

Several possible definitions, Given P a string:

● Return a bucket containing a key that has P as a prefix.
● Return the list of all buckets which contain a key that has P as a prefix.

35

Prefix search in consistent hashing

My ARPE Research subject

Several possible definitions, Given P a string:

● Return a bucket containing a key that has P as a prefix.
● Return the list of all buckets which contain a key that has P as a prefix.
● Return the bucket containing the key which has the longest common prefix

with P.

36

Prefix search in consistent hashing

My ARPE Research subject

Several possible definitions, Given P a string:

● Return a bucket containing a key that has P as a prefix.
● Return the list of all buckets which contain a key that has P as a prefix.
● Return the bucket containing the key which has the longest common prefix

with P.

37

Prefix search in consistent hashing

38

Trie

The keys get sorted in lexicographical
order.

You can easily do a prefix search.

But how do you map to different
buckets ?

We need to combine the efficient tools for prefix search and efficient consistent
hashing.

39

Inspirations:

● Hashed Patricia Trie
● Zuffix arrays
● Idea ?

○ Projection of the key preserved in lexicographic order
○ Find the Longest common prefix
○ Return it’s bucket

The answer will partially depends on the possible applications.

Thank you for your attention !
Questions ?

40

	Slide 1
	Past internships
	Research to come
	Article Presented
	Consistent hashing (1)
	Consistent hashing (2)
	Consistent hashing (3)
	Consistent hashing (4)
	Consistent hashing (1)
	Consistent hashing (2)
	Consistent hashing (3)
	Operations
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	Slide 18
	Slide 19
	New setting: consistent hashing for data storage.
	Complexity
	Round hashing - Contributions (1)
	Round hashing - Contributions (2)
	Round hashing - Contributions (3)
	Round hashing - Contributions (4)
	Round hashing
	Round hashing
	Round hashing
	Computing 10 millions hash values
	Experimental results - load balancing
	External memory tables: round table
	Prefix search in consistent hashing (1)
	Prefix search in consistent hashing (2)
	Prefix search in consistent hashing (3)
	Prefix search in consistent hashing (4)
	Prefix search in consistent hashing (5)
	Prefix search in consistent hashing (6)
	Trie
	Slide 39
	Questions ?

