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L3 : Periods in the order-preserving model, Jakub Radoszewski 

M1 : Read optimized BWT, Travis Gagie and Gonzalo Navarro

M2 : Similarity measures, Tatiana Starikovskaya

Past internships
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Research to come

ARPE : Prefix search in consistent hashing, Roberto Grossi

PhD : Streaming model with Tatiana Starikovskaya 
(conditioned by the finding of a grant)
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Article Presented

Round-Hashing for Data Storage: Distributed Servers and External-
Memory Tables

Roberto Grossi Luca Versari

Università di Pisa Università di Pisa
(Now at Google)

Published at ESA 2018

ESA : European Symposium on 
Algorithms

Rank A (Core Ranking)
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Consistent hashing

A set of K keys
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Operations

● numBuckets()  -  Return the current number of buckets.

● findBucket(k)  -  Given a key k find its bucket in [0, m-1].

● newBucket()  -  Add a new bucket m.

● freeBucket()  -  Release bucket m-1.
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Symposium on the Theory of Computing (STOC) 1997
David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel 
Lewin.
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Consistent hashing and random trees: Distributed caching protocols for 
relieving hot spots on the world wide web.
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IEEE/ACM Transactions on Networking (TON) 1998

Using Name-Based Mappings to Increase Hit Rates

For all web page k, and all server s, Compute h(k,s).

k is assigned to the server that maximize the hash value.

Highest random weight hashing (Rendez-vous hashing)

David G. Thaler and Chinya V. 
Ravishankar. 

When a server is added each bucket  scans its key, if they have a 
new maximum they move to the new bucket.

Easy redistribution for deleted server.
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2014
A fast, minimal memory, consistent hash algorithm

John Lamping and Eric Veach.

Jump consistent hashing
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bucket j with 
probability 1/
(j+1)

For data center, servers cannot disappear, it would mean loss 
of valuable data, they can only be added to increase storage 
capacity.
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New setting: consistent hashing for data storage.
1980

Linear hashing: A new tool for file and table addressing.
Witold 
Litwin. 

0 1 32Initial number 
of bucket N = 
4
Level : L = 0

5

0 1 324
N = 5  L = 1

At any time,     delimits the frontier between the current level and the previous one, 
and :  



Complexity
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Number of buckets

Load factor

Constant user selectable (typically 64 or 128)



Round hashing - Contributions
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● It avoids general divisions and modulo operations.

● findBucket(k) takes constant time and space in the worst-case (important 

for security)

On Intel processors, euclidean divisions and modulo take from 85 to 
100 cycles compared to 1 cycle for addition.

● The factor between the most and the least populated bucket is at most 



Round hashing
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Short arcs

Long arcs

Initialisation:
     s = s0

To add a bucket:
     If no long arcs :
          If s < 2s0 -1 :
               s := s+1
          Else :
               s = s0

     Take the first s long 
arcs
     and form s+1 short 
arcs
     with them. (multiples of 1/s)

(multiples of 1/(s+1))
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Experimental results - time
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Computing 10 millions hash values
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Experimental results - load balancing



External memory tables: round table
● High-throughput servers with many lookup request, few updates
● Some keys can be kept in a stash in main memory

  the total number of keys in the table.
  the maximum number of keys that fit inside one block transfer.
  the number of keys in the stash.

● Look up: Reads just 1 block of EM, thus constant CPU time.
● Update:                                          in the worst case,              expected.
● The number of keys in the stash :                       .
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My ARPE Research subject
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Prefix search in consistent hashing
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Trie

The keys get sorted in lexicographical 
order.

You can easily do a prefix search.

But how do you map to different 
buckets ?



We need to combine the efficient tools for prefix search and efficient consistent 
hashing.
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Inspirations: 

● Hashed Patricia Trie
● Zuffix arrays
● Idea ?

○ Projection of the key preserved in lexicographic order
○ Find the Longest common prefix 
○ Return it’s bucket

The answer will partially depends on the possible applications.



Thank you for your attention !
Questions ?
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